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How many ways can you make change for 1 dollar, using 1-, 5-, 10-, 25-, 50-, and 100-cent coins?

In this section, a = {1, 5, 10, 25, 50, 100} is the list of coin denominations.

If we try to solve this with a recurrence relation, we could reason that the number of ways f (n) of making change for n
cents is the sum, over all coins we could subtract from n, of the number of ways of making the smaller amount, i.e.

f (k) =
0, k < 0
1, k = 0
∑i=1

(a) f (k - ai), k > 0

Unfortunately, this gives 8,577,874,824,929 ways to make change for a dollar, which cannot be correct as there are
only 444,793 integer partitions of 100.
The error in reasoning should be found with the first incorrect result.

k f (k)
1 1
2 1
3 1
4 1
5 2
6 3
There are only two ways to make change for 6 cents, but f (6) = 3. f  gives the number of ways of making 5 cents and
adding a penny, plus the number of ways of making 1 cent and adding a nickel. When changing money, we would like
“1 penny, 1 nickel” and “1 nickel, 1 penny” to be considered as just one way of making change for 6 cents.
We can fix this by adding each type of coin in turn; we will not be able to count different orderings twice if there are
no different orderings.
By increasing the dimension of the recurrence relation, we keep track of enough information to actually solve the
problem. Let f (n, k) be the number of ways of making change for n cents, using only the first k types of coin.

f (n, k) =
0, k < 1 or n < 0
1, n = 0
f (n, k - 1) + f (n - ak, k), else

The boundary cases assert that there is exactly one way to make change for 0 cents using a positive number of coins,
but there are no ways to make change for negative amounts, or using no coins.
In the non-boundary case, the number of ways of making change using the first k types of coin is the number of ways
that don't use that coin, f (n, k - 1), together with the number of ways that do, f (n - ak, k).
The purpose of describing this, is to give a method to solve this problem by hand. The previous recurrence relation is
still too awkward for direct computation, so we present two tricks.
First, the number of ways of making change using only the first type of coin, (which is always assumed to be 1 in this
sort of problem so that change can be made for any integral amount), is always exactly 1. Therefore we consider only
multiples of 5, which reduces the number of relevant values for n to 21, which is managable by hand.
The following table shows that there are 293 ways to make change for a dollar.



n f(n, 1) f(n, 2) f(n, 3) f(n, 4) f(n, 5) f(n, 6)
0 1 1 1 1 1 1
5 1 2 2 2 2 2

10 1 3 4 4 4 4
15 1 4 6 6 6 6
20 1 5 9 9 9 9
25 1 6 12 13 13 13
30 1 7 16 18 18 18
35 1 8 20 24 24 24
40 1 9 25 31 31 31
45 1 10 30 39 39 39
50 1 11 36 49 50 50
55 1 12 42 60 62 62
60 1 13 49 73 77 77
65 1 14 56 87 93 93
70 1 15 64 103 112 112
75 1 16 72 121 134 134
80 1 17 81 141 159 159
85 1 18 90 163 187 187
90 1 19 100 187 218 218
95 1 20 110 213 252 252

100 1 21 121 242 292 293

The rule for updating is that given by the recurrence; for example, 187 = f (90, 4) = f (90, 3) + f (65, 4). This table is
still too awkward for hand computation, so we present a second trick.
By using the equivalent recurrence relation

f (n, k) =
0, k > (a) or n < 0
1, n = 0
f (n, k + 1) + f (n - ak, k), else

the resulting table is sparse, and the numbers are smaller.

n f (n, 1) f (n, 2) f (n, 3) f (n, 4) f (n, 5) f (n, 6)
0 1 1 1 1 1 1
5 2 1

10 4 2 1
15 6 2
20 9 3 1
25 13 4 1 1
30 18 5 1
35 24 6 1
40 31 7 1
45 39 8 1
50 50 11 3 2 1
55 62 12 1
60 77 15 3
65 93 16 1
70 112 19 3
75 134 22 3 2
80 159 25 3
85 187 28 3
90 218 31 3
95 252 34 3

100 293 41 7 4 2 1
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Dynamic Programming
This is a specific instance of a more general technique known as dynamic programming, which is often effective in
attacking combinatorial problems. It works best with a computer, but with a few tricks, it can be employed by hand.
The general idea of solving a problem this way is to find a recursive solution in which many subcases overlap. The
answers to these subproblems can be stored in a table, so that they are never solved more than once. 
For example, the coin-changing problem has a great deal of overlap, since we add different coins to the same total
many times. In fact, a straightforward computer implementation of the recurrence relation requires 26,905 function
calls to f (n, k) in order to find the number of ways to make change for a dollar. But the answer above was found with
only 68 computations.
The standard example is the computation of the Fibonacci numbers,

f (0) = f (1) = 1
f (n) = f (n - 1) + f (n - 2)

A straightforward C program to compute f (50), 

f(n) {return n<3?1:f(n-1)+f(n-2);}
main(void) {printf("%d\n",f(50));}

makes 25,172,538,049 calls to f (n); only 50 are necessary.

Coin change revisited
The dynamic programming approach to this problem does not work for very large values. By throwing some analytic
stuff  at  it,  we  overcome this  problem.  This  section  follows the  relevant  part  of  Graham,  Knuth,  and  Patashnik's
Concrete Mathematics.

The generating function for the problem is F(x) = 1
1-x

1
1-x5

1
1-x10

1
1-x25

1
1-x50

1
1-x100 . First we would like to simplify by

considering only multiples of 5.

F(x) =
1 + x + x2 + x3 + x4

1 - x5

1

1 - x5

1

1 - x10

1

1 - x25

1

1 - x50

1

1 - x100

= 1 + x + x2 + x3 + x4
1

1 - x52
1

1 - x10

1

1 - x25

1

1 - x50

1

1 - x100

= 1 + x + x2 + x3 + x4 Gx5

G(x) =
1

(1 - x)2
1

1 - x2

1

1 - x5

1

1 - x10

1

1 - x20

The nth coefficient of the power series of F(x) is the ⌊n /5⌋th coefficient of G(x). G(x) is  1 - x20-6 (which has a nice
power series) times a polynomial, A(x).

G(x) =
A(x)

1 - x206

A(x) =
1 - x206

(1 - x)2 1 - x2 1 - x5 1 - x10 1 - x20

= 1 + x + x2 +⋯+ x192 1 + x2 +⋯+ x18 1 + x5 + x10 + x15 1 + x10

= 1 + 2 x + 4 x2 + 6 x3 + 9 x4 +⋯+ 24 x74 + 18 x75 + 13 x76 + 9 x77 + 6 x78 + 4 x79 + 2 x80 + x81

The coefficients of A(x) are

1, 2, 4, 6, 9, 13, 18, 24, 31, 39, 50, 62, 77, 93, 112, 134, 159, 187, 218, 252, 287, 325, 364,
406, 449, 493, 538, 584, 631, 679, 722, 766, 805, 845, 880, 910, 935, 955, 970, 980, 985,
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406, 449, 493, 538, 584, 631, 679, 722, 766, 805, 845, 880, 910, 935, 955, 970, 980, 985,
985, 980, 970, 955, 935, 910, 880, 845, 805, 766, 722, 679, 631, 584, 538, 493, 449, 406,
364, 325, 287, 252, 218, 187, 159, 134, 112, 93, 77, 62, 50, 39, 31, 24, 18, 13, 9, 6, 4, 2, 1

Now

G(x) = A(x)
1

1 - x206
= A(x)

k=0

∞


k + 5

5  x20 k

If G(x) = ∑k=0
∞ gk xk, and A(x) = ∑k=0

81 Ak xk, then

g20 q+r = 
j,k=0

20 q+r=20 k+j

∞

Aj
k + 5

5 

which is essentially a closed form, as for any given n = 20 q + r, there are at most 5 non-zero terms. This is a Mathemat-
ica program to compute the number of ways, f (n), of making change for n cents using pennies, nickels, dimes, quar-
ters, half-dollars, and dollar coins.

a[j_] := CoefficientApart (1-x20)5

(1-x)2 (1-x2) (1-x5) (1-x10)
, x, j;

f[n_] := Block{v = ⌊n / 5⌋, q = ⌊v / 20⌋, r = v~Mod~20},

∑j=04 a[r + 20 j] Binomial[q + 5 - j, 5]

Here is the code at work.

Timingf[100], f10102, Shortf1010002, Shortf10100002

{2.641 Second, {293,
1 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 2
333 333 333 333 333 333 333 333 983 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 2
333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 445 333 333 333 333 333 333 333 333 2
333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 341 2
383 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 2
333 333 333 333 333 333 333 333 545 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 2
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001,

133 333 333 333 333 333349 9654 0 000 000 000 000 000 001,
133 333 333 333 333 3333499 9664 000 000 000 000 000 001}}

In 2.641 seconds, we computed the number of ways to make change for a dollar (293, just as before), the number of
ways to make change for 10 duotrigintillion dollars, as well as for 1010 000 and 10100 000 dollars. The last two are not
shown in full, as they are very long; the number of ways to make change for 10100 000 dollars is an integer with 500,002
digits.

The number of ways to make change for 101,000,000 dollars is an integer 5,000,002 digits long.
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