
Build System Issues in

Multilanguage Software

MSc Seminar Transcript
Edited for grammar and clarity

Andrew Neitsch

University of Alberta
Department of Computing Science

August 31, 2012

1

Build System Issues in
Multilanguage Software

http://andrew.neitsch.ca/msc

Slide 1

Hello everyone. Thanks for coming today.
I’m going to present my master’s thesis
work which is titled, “Build System Issues
in Multilanguage Software.”

2

2 of 84

Build Systems:

Transform source code
into running programs

Slide 2

The first phrase in the title of my thesis is
“Build Systems,” and build systems are
things that transform source code into
running programs. An example would be a
Makefile that takes some C source code and
produces an executable that you can run.

Now, you’re probably thinking, “Isn’t that a
solved problem?”

3

3 of 84

Slide 3

Yeah, it kind of is, in some ways. For
example, if you program Java code in
Eclipse there’s a Build Automatically menu
option. It’s checked by default, and every
time you save a change to a source file, it
just instantly recompiles the change. It’s
great. It runs. It’s totally automatic.

So if this is a solved problem, why did I
bother writing a thesis on it?

4

4 of 84

Build System Issues in
Multilanguage Software:

Software written in multiple
programming languages, in which

the parts written in different
languages are both necessary

and interdependent in the
implementation

Slide 4

Well, there’s another phrase in the title of
the thesis, namely “multilanguage
software.” I’m going to look at build
systems in the context of multilanguage
software.

I have a definition of multilanguage software
here. It’s a little technical, but what it’s
intended to do is to distinguish between the
case where there’s a package that has source
code in multiple programming languages,
and there’s a package that has source code
in multiple programming languages where
those programming languages are used
together.

5

An example of something that has multiple
programming languages, but isn’t actually
multilanguage software, would be a
database that’s written in C, for which
there’s a Java client library available. In
that case, the database is actually written
in C, it’s not multilanguage software, even
though there is both C and Java source
code.

The definition I give to capture that is,
“Software written in multiple programming
languages, in which the parts written in
different languages are both necessary and
interdependent in the implementation.”

6

5 of 84

Slide 5

Here’s an example of multilanguage
software. This is the emacs editor, and it’s
looking at its own source code right now.
Part of it’s written in Lisp up here, and
part of it’s written in C down there, and the
interesting thing is, this Lisp can freely call
to C, and this C can freely call to Lisp. Any
particular function can be implemented in
either language. When you’re developing
code for emacs—whatever it is you’re
working on—you can use whichever
language is best suited to the task at hand.
At the individual function level you can
change the implementation language of

7

functions just by rewriting them and
moving them from a C file to a Lisp file or
vice-versa, and recompiling. You don’t need
to change anything else, you just move
functions around and it all works. It’s got
this really nice property that you can use
whatever language is best-suited for the
task.

Now, getting back to build systems—the
build system for this, that enables this to
happen, is really complicated. emacs
actually has to include its own Lisp
interpreter written in C to allow this to
happen. And if you wanted to write a
similar system, that mixed C and Lisp,
before you could write a single line of

8

application code, you’d have to come up
with a complicated build system that can
mix both of these together.

So, is building a solved problem for
multilanguage software?

9

6 of 84

Slide 6

This is Eclipse again. This time it’s
building some C++ source code, and again
there’s a “Build Automatically” menu
option that’s checked by default. It’s a little
more complicated because you’ve got to
wait for a bit for it to build—it’s not
instant the way Java is—but it still sort of
seems like a solved problem.

10

7 of 84

Solved problem?
Not when using Java
together with C/C++

Slide 7

However, the moment you start using Java
and C together, it gets really complicated,
because while Eclipse has support for
building Java, and it has support for
building C, it doesn’t have any support at
all for building both of them together. You
can sort of hack up the build
system—there’s a Makefile here that
pretends to be part of Eclipse’s Makefiles,
and it adds some extra rules so that, when
a Java file changes, the corresponding C
header files are regenerated, but, it’s . . . it’s
really complicated. It goes from being a
completely automatic, almost-instant

11

process, to being something where you have
to understand the internals of both Java
and C build systems, and you have to be
able to integrate them together yourself.

So when you go from single-language to
multilanguage software, building the
software goes from being totally automatic
to an extremely manual expert-level process.

12

8 of 84

Build systems for multilanguage
software are error-prone.

Slide 8

So, my thesis statement is that build
systems for multilanguage software are
error-prone. All the support for that
statement is to come. And, there’s a second
part of the statement that . . .

13

9 of 84

Build systems for multilanguage
software are error-prone.

But there are commonalities that
could be systematically addressed.

Slide 9

although build systems for multilanguage
software are error-prone, there are
commonalities among the problems that
could be systematically addressed. That is,
while build systems are error-prone for
multilanguage software, it’s not that each
particular multilanguage package has its
own unique problems; there are
commonalities that could be systematically
addressed.

14

10 of 84

Research questions
1)	What are the major

issues in building
multilanguage software?

2)	How can they be
addressed?

3)	Why do they occur?

Slide 10

My specific research questions are

1. What are the major issues in building
multilanguage software?

2. How can they be addressed? And,

3. Why do they occur?

15

11 of 84

Qualitative
Methodology
1)	Select case studies
2)	Try to build them
3)	Note problems encountered and

features that prevent problems
4)	Compare problems and features,

analyze commonalities

Slide 11

My thesis uses a qualitative methodology.
I’m following this Case Study Research:
Design and Methods book for guidelines.
The basic procedure is to select some case
studies, try to build them, note the build
problems that I encounter and the build
system features that prevent problems, and
then I systematically analyze the
commonalities among all the problems and
features to produce my findings.

16

12 of 84

Contributions
 •	 Filename-based selection

procedure
 •	 Five deep case studies of open-

source multilanguage packages
 •	 Build patterns and anti-patterns
 •	 Error-proneness finding
 •	 (Anti-)pattern uses, implications
 •	 Abstraction “leakage” finding

Slide 12

The contributions of my thesis are, first of
all, a filename-based selection procedure to
actually find multilanguage software; five
deep case studies of open-source
multilanguage packages, where I analyze
how each multilanguage package is built; the
commonalities among the build problems
for these case studies are analyzed into
build patterns and anti-patterns; the finding
I mentioned earlier that build systems for
multilanguage software are error-prone; I
discuss the uses and implications of these
patterns and anti-patterns; and I also talk
about what I call “leaking abstractions.”

17

13 of 84

Contributions
 •	 Filename-based selection

procedure
 •	 Five deep case studies of open-

source multilanguage packages
 •	 Build patterns and anti-patterns
 •	 Error-proneness finding
 •	 (Anti-)pattern uses, implications
 •	 Abstraction “leakage” finding

Slide 13

You’ll see this contributions slide again
because it’s also the table of contents for
this talk. To begin: the filename selection
procedure.

18

14 of 84

Selection Goal: Five
Multilanguage Packages
Could use, say, Mozilla, Emacs, &c.

Benchmark packages
Exploratory study

Systematic selection

Slide 14

The goal is to find five multilanguage
packages to perform case studies on. Now, I
could just take some well-known
multilanguage packages like Mozilla or
Emacs, things that I use and like. But while
there’s some value in using benchmark
packages such as Mozilla for software
engineering studies—specifically they allow
people to compare results, and when you
publish a paper on Mozilla, since everyone’s
done something with Mozilla, other people
will understand the context well—this is an
exploratory study. I didn’t really want to
look at stuff that a lot of people had looked

19

at before; however, I did want to be
systematic about selecting the packages.

20

15 of 84

Selection Goal: Five
Multilanguage Packages

It’s possible to identify
multilanguage packages

semi-automatically

Slide 15

So I used a semi-automatic procedure to
find multilanguage packages to perform
cases studies on.

21

16 of 84

Procedure
1)	Extract filenames
2)	Classify by language
3)	Discard single-language

packages
4)	Randomly select candidates
5)	Review manually

Slide 16

The procedure used was to extract all the
filenames for all the source code for all the
packages in Ubuntu, and then classify them
by language based on their filename. So, if
it’s a .c file, then I say, oh it’s written in C,
and if it’s a .java file, then, oh, it’s written
in Java. Using that information, I discarded
all the packages that couldn’t be
multilanguage because I only identified a
single programming language. If there were
only .c files, for example, I would say it
can’t be a multilanguage package. Then,
from the remaining packages, I randomly
selected candidates that had multiple

22

programming languages in their source
code. Of those, like I said before, some of
them could be databases that were written
in C and had a Java client library available,
which means they’re not really
multilanguage. So I manually inspected
randomly-selected candidates until I had
five multilanguage packages to look at.

23

17 of 84

Packages from Ubuntu 9.10
 16 384 source

29GB compressed, 101GB source
30 minutes to extract

6.3M filenames
64MB cache file, 20s to load

3s to iterate over
On-the-fly class reloading

Slide 17

Here are some of the implementation
details. Ubuntu has more than 16,000
source packages. All the source code is
about 29 gigs compressed. When you
recursively unarchive all the source code
you end up with 101 gigs of source code.
On my laptop here it takes about 30
minutes to crunch through all of that, get
six million filenames, and squish them into
a 64 meg cache file. It takes a bit to load
into memory and it uses many gigs of ram,
but the end result is that you can iterate
over every filename in every source package
in Ubuntu in about 3 seconds.

24

The tool I implemented for this uses both
Java and C together. Java filename analysis
classes, such as the one I used for finding
multilanguage packages, can be reloaded on
the fly. So, once the cache file is generated
and loaded into memory, when you make a
change to your filename analysis code in
Eclipse, three seconds later you get your
new results from all of Ubuntu.

These are just some implementation details
that I thought were kind of cool.

25

18 of 84

†

†

†

Selection has variety along
many dimensions, enabling

useful comparisons

Slide 18

The result is this selection of five different
case study packages. I kind of got lucky
with the randomization stuff here because
they’re diverse along a lot of different
dimensions. Specifically, there are different
application areas, using a variety of
languages, and different code sizes and team
sizes. These are all open-source packages,
but gnat-gps is industrially-developed by a
company called AdaCore, so that’s the ‘yes’
in the “Industrial?” column, and also axiom
was originally developed by IBM and is now
open-source and the current build system
was written by open-source volunteers, so

26

that’s the ‘yes and no’ for whether it’s
industrial.

It’s important to have a variety of different
kinds of packages so that I could make
useful comparisons. If I only looked at, say,
C compilers, then the sorts of conclusions I
could draw from looking at those wouldn’t
necessarily be very generalizable and I
might not be able to find anything
interesting because they’d all be so similar.
Here there are a variety of different
packages that use a variety of different
languages and differ in a variety of other
ways. They’re all independently-developed
and that should allow me to make useful
comparisons later on from the case studies.

27

19 of 84

Contributions
 •	 Filename-based selection

procedure
 •	 Five deep case studies of open-

source multilanguage packages
 •	 Build patterns and anti-patterns
 •	 Error-proneness finding
 •	 (Anti-)pattern uses, implications
 •	 Abstraction “leakage” finding

Slide 19

Now I’m going to discuss the case studies of
these five packages.

28

20 of 84

Case Study Questions
Purpose and abstractions
Architecture, languages,

and interactions
Build system structure

Build issues
Rebuild issues
Build features

Slide 20

For each case study package, I addressed
questions under these major headings.

• The first is purpose and abstractions:
What is the package? What does it
do? What sort of things does it
present to the user?

• What languages is it written in?
What parts are written in different
languages? How do those different
parts interact?

• How is the build system structured?

29

• What are the issues that occur when
you try to initially build it?

• And also when you try to rebuild the
package after making a small change?

• Finally, what are the build features
that prevent build problems?

30

21 of 84

synopsis
python3.0
gnat-gps

axiom
ruby-prof

Slide 21

These were the five case studies: synopsis,
python, gnat-gps, axiom, and ruby-prof. I
only have time to go into one of them and
I’m going to go with python because I think
most people here are familiar with that even
though in some ways it’s not the best
system to go into detail because it doesn’t
have build problems. All the other ones do
have build problems but I’m going to talk
about python so that you get a feel for what
the case studies are like.

31

22 of 84

python3.0
Purpose and abstractions

Interactive high-level object-
oriented programming language

with functions, methods,
classes, and modules

Slide 22

The purpose and abstractions of
python—it’s an interactive high-level
object-oriented programming language.
This question seems kind of straightforward,
and for python it is pretty straightforward,
because we all understand this, but for
some of the other packages this question
was important in trying to understand what
exactly the package does and how it works.

32

23 of 84

Case Study Questions
Purpose and abstractions
Architecture, languages,

and interactions
Build system structure

Build issues
Rebuild issues
Build features

Slide 23

For the architecture, languages,
interactions, and build system structure, I
have textual descriptions, but I also use
diagrams.

33

24 of 84

Data flowAPI

Implementation

Executable
Uses

Compiler

Transformation

Components ConnectorsLanguages

Python

C/C++

Ruby

Ada

Lisp

Scratchpad

External tool

1 Build problem

non-source-code
artfiact

Grouping

Tool or script

or

Multilanguage and
build diagrams

Slide 24

This is the notation used for the diagrams
to convey what the structure of the build
system and the software itself is. There are
components that are different shapes that
show what different parts of the software
we’re looking at. The different
implementation languages are all
colour-coded and then there are different
connectors that show the relationships
between different components. For example,
if data is flowing from one component to
another, I use the white-headed arrow. If
one component is calling into another or
using it in some way, I use the dark-headed

34

arrow. And then, for the build there will be
a sort of dataflow arrow that has a white
circular arrow tail. That shows that some
artifact is being transformed into some
other artifact via a tool. For some of the
more complicated builds, something will be
generated and then it’s used to generate
something else, and for that case I use a
square arrowtail to show that artifacts are
being transformed into other artifacts via a
different artifact. An example would be
that a configure script might generate a
makefile that then drives the build process.

35

25 of 84

Notation based on the paper by Tu and Godfrey,
“The Build-Time Software Architecture View”

Components Connectors

Executable /
Class File (Java)

Shipped Source
code

Automatically
generated source

code

Environment
Information

compile/link

Compiler

Translator wirtten
in script lanague

Interpreter

Script

build dependency

Translator written
in script language

Figure 8. Notation of build-time architectural
view.

beyond the capability of imake and conditional compil-
ing techniques. The solution employed by GCC is to de-
velop a special program to behave as an automatic code
generator. It takes architecture description files as input and
emits appropriate algorithms and data structures as output.
As a result, some fundamental parts of the source code for
GCC are created during build-time. This unique design ap-
proach makes the build-time architecture of GCC very dy-
namic, and it is not well represented by static architectural
views. Many interesting dynamic build architectures may
be found within the domain of programming language com-
piler/interpreter systems. This is because the data structures
and algorithms (especially algorithms for code generation
and optimization) are highly dependent on the target CPU
architecture and operating system.

It is important to point out that there are many soft-
ware/computing systems that use various dynamic con-
figuration techniques at run-time, such as COM/DCOM,
CORBA, Enterprise Java Beans, and Java reflection. For
example, DCOM and CORBA allow distributed applica-
tions to call a remote service without knowing its exact lo-
cation or even the programming language in which it is im-
plemented. However, these techniques are part of the exe-
cution architecture, where the distributed components have
already been build and deployed. Their dynamic run-time
architectures can be modelled by the “physical view” in the
“4+1” model and the “execution architecture view” in the
“four views” model.

Build View

Code Robot

Code Templates

Compiler

"Code Robot" Source
Code

use

Hardware and OS dependent
source code

Environment
Information

compile

use

transform

depend

Figure 9. The “code robot” architecture style.

5 The “Code Robot” Architectural Style

In their book on software architecture, Shaw and Garlan
discussed several architectural styles that model recurring
abstract patterns of high-level structure within software sys-
tems, such as “pipeline”, “layered”, “client-server” and “in-
terpreter” [13]. In Kruchten’s “4+1” paper, each of his ar-
chitectural views indicates some representative architecture
styles. For example, the “object-oriented” style is used in
logical view, while the “pipe and filter” and “client-server”
styles are applied in the process view [9].

We consider that the dynamic build-time behaviour of
systems such as GCC and Perl defines a new architectural
style that applies to build-time architectures; we call it the
“code robot” architecture style. The idea is, if the behaviour
of the software system depends heavily on the hardware ar-
chitecture or operating system, the software designer must
devise an effective and sophisticated strategy for customiza-
tion of the system source code at build-time. For example,
the strategy taken by the developers of GCC and Perl is to
write a code generator, a “code robot”, such as the gen*.c
in GCC and xsubpp in Perl. In Perl, the system-dependent
code is specified by a template written in XS language. In
GCC, the rules of how to create them from hardware ar-
chitecture description files are embedded in the code robot
itself. Given a description of hardware architecture, the
code robot knows how to generate corresponding system-
dependent code. Figure 9 shows the “code robot” architec-
ture style.

5.1 Code Robots and Open Source Software

Automatic source code generation is not new; it is a well
known technique that is in wide use in both industry and
by open source projects. For example, the code wizard in

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 9, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

Slide 25

This notation is based on work by Tu and
Godfrey called “The Build-Time Software
Architecture View.” This is the notation
they use. I changed it a bit. The other
differences are that I’m using multilanguage
stuff for colour coding, and that I’m doing
it at a slightly more abstract level. I’m
looking at higher-level architectural
components instead of the individual
artifacts shown in their diagrams.

36

26 of 84

Python

InterpreterBuilt-ins

Concrete
objects

Abstract Object API

list

dict

object

Parser

Compiler

Interpreter

Parse trees

Byte code

Standard Library

C modules Python
modules

...

slice

Python
source
code

Slide 26

Here’s one of these diagrams. This is the
multilanguage architecture of python. The
gray is C and the purple is python. Almost
all of python is written in C and there are a
bunch of python modules written in python.

The two major parts are that there is a
standard library and then there’s the
python implementation itself. The python
interpreter is written entirely in C and most
of python’s objects are implemented in C.
So there’s a file called object.c that
implements what an object is. These are all
tightly coupled together because they all
use each other. For example an object’s

37

namespace is a dict and a dict is also an
object. All these entities are tightly coupled
together, and C modules call into these
objects via either the APIs directly or the
abstract object API. Python code can’t call
this API directly. However it comes down
as python source code through a parser,
compiler, and interpreter, which ends up
calling the exact same APIs as the C
modules. The important point here is that
modules written in C and modules written
in python that talk to each other are calling
completely equivalent APIs, it’s just the C
is calling the API directly, whereas the
python is calling it indirectly through an
interpreter.

38

An example would be that to multiply two
numbers using the C API, you call
PyNumber Multiply, whereas in python you
write a * b to multiply two numbers. And
eventually when you get into the
interpreter, it just ends up calling
PyNumber Multiply too. So the code
written in C and python have access to
exactly the same API.

39

27a of 84

Interpreter
and built-ins

Standard Library
C modules
required by

distutils

distutils

Other
Standard

Library Python
modules

Other
Standard
Library C
modules

Source
view

Build
view

Execution
view

Standard Library

Slide 27a

Now I’ll show how this is actually built.
This is a build-time view diagram. At the
top level there’s the source code. This is
just what comes when you unpack the
source code. The build view shows what
happens at build time, and then the
execution view shows which components
exist at runtime and how they’re related.

40

27b of 84

Interpreter
and built-ins

Standard Library
C modules
required by

distutils

distutils

Other
Standard

Library Python
modules

Other
Standard
Library C
modules

Source
view

Build
view

Execution
view

c compiler

python

Standard Library

Slide 27b

To start, the interpreter is written in C so it
just goes through the C compiler to turn
into the python executable. Now the
standard library is built by a standard
library module called distutils. Well you
kinda need the standard library to build
itself—it’s a complicated issue—so the way
that it’s resolved is that the C modules that
are required by distutils are hardcoded into
the build scripts. For example, distutils
needs regular expression evaluation, which
is a C module, so that is compiled directly
into the python executable.

41

27c of 84

Interpreter
and built-ins

Standard Library
C modules
required by

distutils

distutils

Other
Standard

Library Python
modules

Other
Standard
Library C
modules

Source
view

Build
view

Execution
view

c compiler

python

Python Standard Library

distutils

file copy

Standard Library

Slide 27c

Once that’s done, distutils is simply copied
to the execution environment, because it’s
python code, and it uses the python
interpreter directly to run.

42

27d of 84

Interpreter
and built-ins

Standard Library
C modules
required by

distutils

distutils

Other
Standard

Library Python
modules

Other
Standard
Library C
modules

Source
view

Build
view

Execution
view

c compiler

python

Python Standard Library

distutils
distutils

file copy

Standard Library

Slide 27d

And the other standard library python
modules are also all copied into the
standard library.

43

27e of 84

Interpreter
and built-ins

Standard Library
C modules
required by

distutils

distutils

Other
Standard

Library Python
modules

Other
Standard
Library C
modules

Source
view

Build
view

Execution
view

c compiler

python

Python Standard Library

c compiler

distutils
distutils

file copy

Compiled C
module

Standard Library

Slide 27e

44

27f of 84

Interpreter
and built-ins

Standard Library
C modules
required by

distutils

distutils

Other
Standard

Library Python
modules

Other
Standard
Library C
modules

Source
view

Build
view

Execution
view

c compiler

python

Python Standard Library

c compiler

distutils
distutils

file copy

Compiled C
modules

Compiled C
modules

Standard Library

Slide 27f

45

27g of 84

Interpreter
and built-ins

Standard Library
C modules
required by

distutils

distutils

Other
Standard

Library Python
modules

Other
Standard
Library C
modules

Source
view

Build
view

Execution
view

c compiler

python

Python Standard Library

c compiler

distutils
distutils

file copy

Compiled C
modules

Compiled C
modules

Compiled C
modules

Standard Library

Slide 27g

Once that occurs, distutils can now run
because it has access to the C modules it
depends on, and the rest of the python
standard library is there. So it’s able to
build up the rest of the python standard
library by invoking a C compiler to generate
compiled C modules.

46

27h of 84

Interpreter
and built-ins

Standard Library
C modules
required by

distutils

distutils

Other
Standard

Library Python
modules

Other
Standard
Library C
modules

Source
view

Build
view

Execution
view

c compiler

python

Python Standard Library

c compiler

distutils
distutils

file copy

Compiled C
modules

Compiled C
modules

Compiled C
modules

Compiled C
modules

Standard Library

Slide 27h

47

27i of 84

Interpreter
and built-ins

Standard Library
C modules
required by

distutils

distutils

Other
Standard

Library Python
modules

Other
Standard
Library C
modules

Source
view

Build
view

Execution
view

c compiler

python

Python Standard Library

c compiler

distutils
distutils

file copy

Compiled C
modules

Compiled C
modules

Compiled C
modules

Compiled C
modules

Compiled C
modules

Standard Library

Slide 27i

And the end result is the complete python
standard library and the python executable
at runtime.

48

27j of 84

Case Study Questions
Purpose and abstractions
Architecture, languages,

and interactions
Build system structure

Build issues
Rebuild issues
Build features

Slide 27j

The next question I addressed for each case
study was what build issues and rebuild
issues there were in trying to build the
software.

49

27k of 84

Interpreter
and built-ins

Standard Library
C modules
required by

distutils

distutils

Other
Standard

Library Python
modules

Other
Standard
Library C
modules

Source
view

Build
view

Execution
view

c compiler

python

Python Standard Library

c compiler

1

distutils
distutils

file copy

Compiled C
modules

Compiled C
modules

Compiled C
modules

Compiled C
modules

Compiled C
modules

Standard Library

Slide 27k

As I mentioned before, python isn’t the
greatest example for this, because there’s
only one issue. It’s this red warning triangle
right here that shows that when the
interpreter is built the dependencies
between the header files and the source files
specified in the Makefile are manually
specified as that every object file depends
on every public python header file, but the
list of all header files isn’t quite right. The
end result is that most of the time when
you change any python header file and then
try to rebuild, it will rebuild all of python.
However there are some header files where

50

when you try to change them, those changes
are just totally ignored. That’s the one
rebuild issue in python.

51

28 of 84

Case Study Questions
Purpose and abstractions
Architecture, languages,

and interactions
Build system structure

Build issues
Rebuild issues
Build features

Slide 28

The build features refer to the build
problems of all the other case studies. It’s
not going to make much sense without
context so I’m just going to skip that.

52

29 of 84

Purpose and abstractions

Architecture, languages,
and interactions

Build system structure

Build issues

Rebuild issues

Build features

synopsis

python3.0

gnat-gps

axiom

ruby-prof

Slide 29

The contribution again was these case
studies of five systems. I addressed all of
these questions for each of them, including
the diagrams of how they work, all the
build problems I ran into, and the problems
I encountered trying to rebuild these
systems as well.

53

30 of 84

Contributions
 •	 Filename-based selection

procedure
 •	 Five deep case studies of open-

source multilanguage packages
 •	 Build patterns and anti-patterns
 •	 Error-proneness finding
 •	 (Anti-)pattern uses, implications
 •	 Abstraction “leakage” finding

Slide 30

Based on those build problems and features,
I was able to produce a set of build patterns
and anti-patterns.

54

31 of 84

synopsis python3.0 gnat-gps axiom ruby-prof
Anti-pattern:
Filename Collision 2

Anti-pattern:
Installation Required 1 1 6 1

Anti-pattern:
Unverified
Third-Party Software

3 3 4 1 2

Anti-pattern:
Incorrect
Dependencies

1 2 1 2 3 5

Anti-pattern:
Ignored Error 4 3 3

Pattern: Build-Free
Extensibility 2 1 1

Pattern:
Object-Oriented
Builds

3 4 1 1 5

Pattern: Persistent
Configuration 3 2 7 5 2 4

Slide 31

Here’s a table of them. I’ll let you look at
that for a little.

The way that this table works is that this
column has names of patterns or
anti-patterns I produced from the research,
and each of the other columns are individual
case studies. A red triangle shows that
there was a build problem for this system
that contributed to the finding that this is a
pattern or anti-pattern. And a green circle
shows that there was a build feature that
contributed to this pattern or anti-pattern.

55

32 of 84

Build (Anti-)‌Pattern
Template

Description
Consequences

Evidence
Remedies

Applicability

Slide 32

What exactly is a pattern or anti-pattern?
I’m using the definition that it is a
discussion of something about build systems
that follows this template: that there’s
description, consequences, evidence,
remedies, and applicability.

I’m going to give an example that shows
what each of these headings mean right
away. But first I’m going to talk about
some of these patterns and anti-patterns.

56

33 of 84

synopsis python3.0 gnat-gps axiom ruby-prof
Anti-pattern:
Filename Collision 2

Anti-pattern:
Installation Required 1 1 6 1

Anti-pattern:
Unverified
Third-Party Software

3 3 4 1 2

Anti-pattern:
Incorrect
Dependencies

1 2 1 2 3 5

Anti-pattern:
Ignored Error 4 3 3

Pattern: Build-Free
Extensibility 2 1 1

Pattern:
Object-Oriented
Builds

3 4 1 1 5

Pattern: Persistent
Configuration 3 2 7 5 2 4

Slide 33

The pattern Object-Oriented Builds was
inferred by noticing that there were some
interesting features used here and here but
also some problems here and together they
showed that this Object-Oriented Builds
pattern is something that can address build
problems and is a positive feature to have in
a build system. That’s the example pattern
that I’m going to go over.

57

34 of 84

Example Pattern:
Object-Oriented Builds

Description

Build system can be dynamically
customized and extended
using object-oriented APIs

Slide 34

The description of Object-Oriented Builds
is that the build system can be dynamically
customized using object-oriented APIs. An
example would be the build tool called Rake
that’s implemented in Ruby. All the build
entities are objects that you can manipulate
at runtime instead of the build system
being a bunch of shell commands inside a
Makefile that aren’t object-oriented at all
where you can’t do anything dynamically.

58

35 of 84

Example Pattern:
Object-Oriented Builds

Consequences
Encapsulation and reuse

of build functionality
Object-oriented tools are less

mature and may be buggy

Slide 35

The consequences of the pattern
Object-Oriented Builds are that you get
encapsulation and reuse of build
functionality. Build functionality can be
packaged up in objects and can be reused in
general-purpose ways. However, there’s one
slight downside that object-oriented tools
are less mature and they may be buggy. So
there aren’t many bugs left in make because
it’s been around for so long but these
brand-new tools have new features that
haven’t really been thought out or tested
extensively sometimes.

59

36 of 84

Example Pattern:
Object-Oriented Builds

Evidence

python3.0, synopsis use distutils
ruby-prof uses Rake

exports build-time prof‌iling
some bugs

Slide 36

The evidence for this pattern is that python
and synopsis use an object-oriented tool
called distutils that works really well for
helping it to build some fairly complicated
software. And a package called ruby-prof
uses an object-oriented build tool called
Rake. It has a very small build system and
has this really interesting feature—
ruby-prof is a profiler for the Ruby
language, and through the use of this build
system, its ability to profile programs is
exported as a build-time module. Other
packages can import the build-time module
to profile their own code at build time,

60

which is really interesting. However there
are some bugs in Ruby libraries. It happens.

This is evidence of commonality among
build systems in that these different
packages are using object-oriented builds to
good effect.

61

37 of 84

Example Pattern:
Object-Oriented Builds

Remedies

Use tools like Rake, distutils, SCons
Package build functionality
for reuse in other projects

Slide 37

The remedies heading for a pattern
describes what you could do to either
implement this pattern or address an
anti-pattern. The remedies for
Object-Oriented Builds are to use
object-oriented build tools like Rake or
distutils or SCons, and to package build
functionality for reuse in other projects.

62

38 of 84

Example Pattern:
Object-Oriented Builds

Applicability

Single- and multilanguage builds

May help deal with complexity

Slide 38

And finally applicability asks, what exactly
does this pattern or anti-pattern apply to?
Does it just apply to the one system it
occurred in, does it apply to build systems
in general, or is it only for multilanguage?
For Object-Oriented Builds, although I
found evidence of object-oriented builds in
multilanguage systems there’s nothing
really necessarily single-language about it.
An object-oriented build could really be
used for any sort of build system including
single-language. However, it may help
better deal with the complexity of a
multilanguage build. Single-language builds

63

are, as I said before, kind of a solved
problem, and you might not need this. But
when you’ve got a more complicated build,
this might help.

64

39 of 84

synopsis python3.0 gnat-gps axiom ruby-prof
Anti-pattern:
Filename Collision 2

Anti-pattern:
Installation Required 1 1 6 1

Anti-pattern:
Unverified
Third-Party Software

3 3 4 1 2

Anti-pattern:
Incorrect
Dependencies

1 2 1 2 3 5

Anti-pattern:
Ignored Error 4 3 3

Pattern: Build-Free
Extensibility 2 1 1

Pattern:
Object-Oriented
Builds

3 4 1 1 5

Pattern: Persistent
Configuration 3 2 7 5 2 4

Slide 39

Here’s the table of anti-patterns again. Now
I’ll talk about incorrect dependencies. Most
of the previous work on build systems has
all been about finding the right
dependencies and pruning the software
manufacture graph and having the right
level of detail and doing smarter builds by
only looking at what functions are called
and stuff like that. But when I did these
case studies I found that while the
anti-pattern Incorrect Dependencies did
show up a couple of times in some systems,
and some other systems had good remedies
for automatically finding the correct

65

dependencies, it wasn’t actually that big a
problem. It didn’t stop anything from
building. Remember, the main problem I
had with these packages was getting them
to build at all. And dependencies only
matter for rebuilds. The dependencies don’t
matter much for getting the software to
build in the first place. So although there’s
been a lot of work and most people would
expect your build system problems are
caused by incorrect dependencies, I found
that it just wasn’t actually that big a deal
in terms of getting the software to build
initially.

66

40 of 84

synopsis python3.0 gnat-gps axiom ruby-prof
Anti-pattern:
Filename Collision 2

Anti-pattern:
Installation Required 1 1 6 1

Anti-pattern:
Unverified
Third-Party Software

3 3 4 1 2

Anti-pattern:
Incorrect
Dependencies

1 2 1 2 3 5

Anti-pattern:
Ignored Error 4 3 3

Pattern: Build-Free
Extensibility 2 1 1

Pattern:
Object-Oriented
Builds

3 4 1 1 5

Pattern: Persistent
Configuration 3 2 7 5 2 4

Slide 40

Now I’m going to talk about the
anti-pattern of Filename Collision because
I’m going to come back to it later. This was
where one package failed to build because I
was building it in Linux, in a virtual
machine running on my mac, and it was
using the Shared Folders feature of VMware.
The Mac’s filesystem is case-insensitive.
The software running on Linux expected to
access one file but it actually got a different
file with a similar name after you ignored
the case. And that caused the build to fail.
Although that is the only pattern or
anti-pattern where I only have evidence

67

from one case study, however, analyzing
that specific anti-pattern shows it’s not
something specific to that package. It
wasn’t something that could only happen in
synopsis; it could happen in any package
that there are similarly-named files.

68

41 of 84

synopsis python3.0 gnat-gps axiom ruby-prof
Anti-pattern:
Filename Collision 2

Anti-pattern:
Installation Required 1 1 6 1

Anti-pattern:
Unverified
Third-Party Software

3 3 4 1 2

Anti-pattern:
Incorrect
Dependencies

1 2 1 2 3 5

Anti-pattern:
Ignored Error 4 3 3

Pattern: Build-Free
Extensibility 2 1 1

Pattern:
Object-Oriented
Builds

3 4 1 1 5

Pattern: Persistent
Configuration 3 2 7 5 2 4

Slide 41

Another pattern to go over is Build-Free
Extensibility, which was that these two
packages, gnat-gps and axiom, were really
hard to build. Axiom can’t actually be built
at all on the version of Ubuntu I looked at.
And gnat-gps had such a horrible build
system that the Ubuntu maintainer just
rewrote it and he complained in the source
code for the new system about all the ”evil
recursive Makefiles.” These are systems
that are very hard to build. However,
Build-Free Extensibility is that, these
packages have mechanisms for end-users to
extend and customize the software that

69

make the build problems not that big a
deal. Once you get an axiom binary from
somewhere, say the project website, you can
extend axiom all you want by using its
built-in language called Scratchpad. You
don’t really ever need to rebuild the whole
system from scratch unless you’re an axiom
developer. You can customize and you can
extend and you can do all sorts of things
without ever building, and the same holds
for gnat-gps. And python has a similar
feature, in that you extend python by
writing python source code. We extend
python all the time by writing useful python
modules and posting them on github. And
not once do we ever build python when

70

we’re doing that. So even though there was
that rebuild issue in python I mentioned,
that’s not really a problem for most people
working with python, because there are
these mechanisms to extend python that
don’t involve builds at all. This is a pattern
that is an end-run around build problems.

71

42 of 84

Contributions
 •	 Filename-based selection

procedure
 •	 Five deep case studies of open-

source multilanguage packages
 •	 Build patterns and anti-patterns
 •	 Error-proneness finding
 •	 (Anti-)pattern uses, implications
 •	 Abstraction “leakage” finding

Slide 42

The next contribution that I’m going to
look at is this finding that build systems for
multilanguage software are error-prone.

72

43 of 84

Build Systems for
Multilanguage Software

are Error-Prone
4 of the 5 case studies

require manual intervention
to build successfully

(and python3.0, the 5th, has rebuild problems)

Slide 43

Four of the five case studies required manual
intervention to build successfully. So if you
download the source code, you unpack it,
and you try to build it, you’re gonna get a
weird error message and you’re gonna have
to fiddle with it for a while before you get it
to build. And that’s not really what we’d
expect—if build systems were a solved
problem, these packages would just build.
And they don’t. Based on the fact that four
of the five case studies are error-prone, I’m
saying that build systems for multilanguage
software are error-prone. Now, if this was a
quantitative study and I only looked at five

73

and said, you know, well—that wouldn’t
work. However, since we’re doing analytical
inference and generalization here, we can
look at the specific problems we encounter,
and we can see whether they would only
apply to one particular system or whether
they could apply to many systems.

74

44 of 84

Build Systems for
Multilanguage Software

are Error-Prone
Commonalities among build
problems of independently-

developed packages

Not “one-off” problems

Slide 44

Since I was able to infer so many build
patterns and anti-patterns from the
problems I looked at, that’s showing that
there are commonalities among these
problems. And, these are all
independently-developed packages, which
shows that there are systematic problems
that could be systematically addressed.
These aren’t just one-off problems where
each package is making its own individual
mistake, there are commonalities among the
problems.

75

45 of 84

synopsis python3.0 gnat-gps axiom ruby-prof
Anti-pattern:
Filename Collision 2

Anti-pattern:
Installation Required 1 1 6 1

Anti-pattern:
Unverified
Third-Party Software

3 3 4 1 2

Anti-pattern:
Incorrect
Dependencies

1 2 1 2 3 5

Anti-pattern:
Ignored Error 4 3 3

Pattern: Build-Free
Extensibility 2 1 1

Pattern:
Object-Oriented
Builds

3 4 1 1 5

Pattern: Persistent
Configuration 3 2 7 5 2 4

Slide 45

That’s shown by this chart where, apart
from filename collision which I already
addressed, each of these is taking evidence
from multiple unrelated case studies in
order to infer the pattern or anti-pattern.

76

46 of 84

Research question 1
Q)	What are the major issues

in building multilanguage
software?

A) Getting the software to build at
all is the major issue

Slide 46

This addresses research question number
one, which is, what are the major issues in
building multilanguage software? And,
based on the case studies I’ve conducted,
the answer is: Getting the software to build
at all is the major issue.

77

47 of 84

Contributions
 •	 Filename-based selection

procedure
 •	 Five deep case studies of open-

source multilanguage packages
 •	 Build patterns and anti-patterns
 •	 Error-proneness finding
 •	 (Anti-)pattern uses, implications
 •	 Abstraction “leakage” finding

Slide 47

The next contribution I’m going to address
is about uses and implications of patterns
and anti-patterns.

78

48 of 84

Uses and implications
(Anti-)patterns not necessarily

multilanguage-specific
(Anti-)patterns could be

addressed by build frameworks

Key (anti-)patterns

Slide 48

So there are three things I want to talk
about in terms of uses and implications of
patterns and anti-patterns. The first is that
they’re not necessarily multi-language
specific. The next is that they could best be
addressed by build frameworks. And the
third is that there are two key patterns that
seem like they could be most useful for
addressing the systematic problems in
building multilanguage software.

79

49 of 84

Uses and implications
(Anti-)patterns not necessarily

multilanguage-specific
(but may be more likely—e.g.,

Incorrect Dependencies)
(Anti-)patterns could be

addressed by build frameworks

Key (anti-)patterns

Slide 49

The first thing is that none of these
patterns or anti-patterns are necessarily
multilanguage-specific. When you look at
what the pattern actually is, although it
was found specifically in multilanguage
systems, there’s nothing specifically
multilanguage about it. So, these could all
apply to single-language software as well,
which is kind of interesting. However, I
think that they are more likely in
multilanguage software. For example, with
incorrect dependencies—it’s kind of a solved
problem in the single-language case, there’s
been lots of research, and there are tools

80

that just automatically do everything. But
when you start mixing the different
languages together, you end up with all
sorts of things. The problems that happen
in single-language packages, happen in
multilanguage software, and I think it’s
more likely to happen there.

81

50 of 84

Uses and implications
(Anti-)patterns not necessarily

multilanguage-specific
(Anti-)patterns could be

addressed by build frameworks

Key (anti-)patterns

Slide 50

The next thing I want to talk to you about
is that patterns and anti-patterns could
best be addressed by build frameworks.

82

51 of 84

Build Frameworks

(Anti-)patterns could be
used by practitioners

But generally better for build
tools and build frameworks

Slide 51

A developer could take this list of patterns
and anti-patterns, and go through their
source code, and say, “Oh, oh! We’ve got
that anti-pattern, I’m going to fix it. Oh!
That would be a nice pattern to have, let
me add it.” But it would be a lot of work.
It would probably be better if this was done
in some sort of general-purpose way in
terms of build tools and build frameworks.

83

52 of 84

Why build frameworks?
Patterns take effort to implement

Anti-patterns take effort to correct

For individual projects:

Tangential

Technical debt

Slide 52

These patterns take effort to implement,
and the anti-patterns take effort to correct,
and for individual projects, it’s sort of
tangential. You could be adding features or
fixing bugs in this time that you’re adding
this nice new feature to the build system.
That isn’t addressing a problem that
actually affects your users. Many projects
will be quite comfortable with the technical
debt of having anti-patterns in their build
systems, or not having some nice patterns.

84

53 of 84

Why build frameworks?
Address problems systematically

Slide 53

Build frameworks allow this problem to be
addressed systematically.

85

54 of 84

Why build frameworks?
Address problems systematically

Example: Filename Collision

General-purpose solutions could
be viewed as less tangential

Slide 54

An example. I talked about filename
collision earlier. It’s this problem where
when you build this software on a certain
filesystem, it won’t build because of the way
certain files are named. There’s a
case-insensitive name clash. The issue I
looked at was very specific to python—there
was an issue that involved the python
byte-compiled cache files, so it was kind of
complicated. But you could write a tool
that would automatically detect this, and
your tool could give a warning when you
build this. It could say, “Hey, this won’t
build on a Mac, are you sure you want to do

86

that?” And, creating a general-purpose
solution that could be used by many
different projects, could be viewed as less
tangential by individual projects. So, if I
report this bug to the synopsis
developers—“this won’t build on a
mac”—they could fix it, but it would be a
lot of work for them, and it would only fix
it for synopsis. Whereas, if they were to do
this in a general tool, a lot of people could
use it.

87

55 of 84

Object-Oriented Builds
Could address (anti‑)‌patterns

systematically

e.g., Filename Collision plug-in

General-purpose solutions could
be viewed as less tangential

Slide 55

In terms of Object-Oriented Builds, that
could be a plugin. So, since synopsis is done
in an object-oriented build tool, they could
implement such a check as a plugin for that
build tool, and then it could just be used by
all sorts of people. It would be less
tangential, because instead of just fixing
one obscure problem for one system, you’re
fixing one slightly less-obscure problem for a
large number of systems.

88

56 of 84

Uses and implications
(Anti-)patterns not necessarily

multilanguage-specific
(Anti-)patterns could be

addressed by build frameworks

Key (anti-)patterns

Slide 56

Object-Oriented Builds is one of two key
patterns that I want to talk about.

89

57 of 84

Key (Anti-)Patterns

Object-Oriented Builds

Build-Free Extensibility

Slide 57

And the other one is Build-Free
Extensibility.

90

58 of 84

Build-Free Extensibility
Provide extension mechanisms
that do not require building,

e.g., a scripting interface

End-run around build problems

Someone still needs to build

Slide 58

As I mentioned before, that’s about
providing extension mechanisms that don’t
require building. For example, a scripting
interface. Even if the software’s really hard
to build, you have some sort of interface
that still lets you do a lot of the things that
a build system would let you do.

It’s an end-run around build system
problems. Someone still needs to build,
someone still needs to address these build
problems, but not everyone who uses the
software has to.

91

59 of 84

Build-Free Extensibility
Scripting components and build
systems have the same goal:

turn source code into
running programs

No longer tangential

Slide 59

One interesting thing related to
Object-Oriented Builds—when you’re
addressing build problems in an
object-oriented way, releasing them as
general-purpose solutions, it’s less
tangential—scripting components have the
exact same goal that build systems do,
which is, they turn source code into running
programs. So, whether that’s a Makefile
that is supposed to turn your C source code
into a running program, or whether that’s a
component in your system that’s supposed
to load python code and run the scripts on
your documents, it’s got the same goal, so

92

it’s no longer tangential. Getting that code
built and running properly becomes one of
the goals of the software project.

93

60 of 84

Contributions
 •	 Filename-based selection

procedure
 •	 Five deep case studies of open-

source multilanguage packages
 •	 Build patterns and anti-patterns
 •	 Error-proneness finding
 •	 (Anti-)pattern uses, implications
 •	 Abstraction “leakage” finding

Slide 60

And, that’s mostly related to this finding I
had . . .

94

61 of 84

Leaking Abstractions
Abstractions and mental

models from the application and
implementation domains are

manifested in the build system
with positive or negative effects

Slide 61

that abstractions from application and
implementation domains are leaking into
the build system. I have two ways to
explain it. The first one is that abstractions
and mental models from the application and
implementation domain are manifested in
the build system with positive or negative
effects. I have some detailed examples right
away if this doesn’t make sense. When I
performed these case studies, I was noticing
things in the build system that looked like
they came from the way the software was
implemented or what the software was
intended for. There were properties—

95

62 of 84

Leaking Abstractions
The build system has

properties whose presence
may only be explainable by
reference to the application
and implementation domains

Slide 62

There’s another way I have for explaining
this. The build system has properties whose
presence may only be explainable by
reference to the application and
implementation domains. So, if there’s
something in the build system, and I’m
looking at it, saying, “I’ve seen a lot of
build systems before, but I can’t understand
how anyone would do that. Like, why would
you do that in a build system?” And after
thinking about it for a while, and looking at
what the package actually did, it started to
make sense.

96

63 of 84

Detailed Examples

Slide 63

Let me give some detailed examples.

97

64 of 84

Synopsis libsynopsisC++
parser

Python
parser

IDL
parser

Cpp
parser

C
parser

Python
libsynopsis.soSynopsis

Source
view

Build
view

Execution
view

c++ compilerc++ compiler

generates

documentation
source for PDF

file copy

3

ParserImpl.soloads

Docs as HTML Docs as PDF

xmlroff

1
2

synopsis
independently-developed and -built

components with standard interfaces

 only major problem:
 search path configuration

CORBA

Slide 64

Synopsis is a source code documentation
tool. The way it’s built is there are parsers
for different languages, and they’re all taken
from other open-source projects. Each of
these—this is OmniIDL, this is
openCpp—they took those and they
wrapped a standardized interface around
them. And each of these is
independently-built to create a shared
library and a python module. Synopsis
loads each of these modules. It’s using
independently-developed and -built
components with standardized interfaces,
and the only problem, the only major

98

problem I encountered trying to build this
was that it’s kind of tricky to set up the
paths so that synopsis can find all these
different shared libraries and load them
properly. Now, synopsis was developed as a
documentation tool for an experimental
CORBA-based UNIX windowing system.
That’s the CORBA there. For those not
familiar with CORBA, CORBA uses
independently-developed and -built
components with standardized interfaces.
And one of the problems you get trying to
develop CORBA software is you gotta
somehow configure all these components to
find each other, and it gets kind of
complicated. I thought it was really

99

interesting that the build system was
designed in the same way as the application
this tool was developed for, and that it had
very similar problems, namely search path
configuration.

100

65 of 84

python3.0
simple, flat, explicit build system

 incorrect non-‘magic’ dependencies

Slide 65

The next case study was python. And if
type ‘import this’ into python, you get a
little poem about python’s philosophy. It
says things like, “Implicit is better than
implicit,” “Simple is better than complex.”
These are sort of design decisions when you
write in python. And even though the
python build system for building the
interpreter, the part that’s written in Make,
is Make and shell scripts, it has many of the
same features of idiomatic python. They
pick explicit things, they pick simple things.
One choice you have to make when
designing a Make-based build system is, do

101

you want it flat, or do you want it
hierarchical? And they went with flat. And
part of the python philosophy is, “Flat is
better than nested.” They’re using the same
philosophy they use in developing python
for developing the build system itself.

The only problem I encountered with
python, as I said, was the rebuild problem,
that some of these dependencies are
manually-specified and they get them
wrong. And, that, python in general tries to
avoid ‘magic’ stuff like just automatically
finding things. It’s right here—“Explicit’s
better than implicit.” And in the python
philosophy, you’re better off just explicitly
stating these things instead of letting some

102

tool try to figure it out automatically,
possibly getting it wrong.

Python the application and python’s build
system, share many of the same nice
properties, but also the occasional bad
property, such as avoidance of magic
leading to extra work and bugs.

103

66 of 84
For each source directory:

Build
view

Execution
view

Source
view

gps

gnatlib

gvd

kernel

common

widgets

vsearch

prj
editor

src_editor

aliasesaunit

codefix

vdiff

browsersvcs

builder navigation

custom

helpvfs docgen2

ada
module

cpp
modulepython

shell keymanager theme
manager

refactoring action
editor socket views

remote completion

code
analysis

Source-
Navigator

gnat-gps cbrowse

C compiler

Ada
sources C sources

Ada compiler

C compiler

intermediate
object files
intermediate
object files

Python
source

Source directories

plugins

file copy

3

External
libraries 1

External
libraries2

2

linker

5

4

gnat-gps
hierarchical structure difficult to build

but allows splitting off libraries

Slide 66

gnat-gps has this really complicated
hierarchical build structure. It’s got this
graph. Each of these is built independently
and it calls into the build systems for
everything where the arrow’s going in. It
gets messy. And this is the one where the
Ubuntu maintainer rewrote this and they
got rid of the hierarchical structure entirely,
and cleaned out the evil recursive makefiles,
and now it just builds all the code all at
once, into one file, and it works. And it’s
great. And I could never get the original to
build.

This seems like kind of a strange way to

104

make a build system. Why do it like this
when you could have a nice simple flat one?
And it turns out that this matches the
business goals of the company that develops
this software. This package is a development
environment for Ada source code, but the
company that makes it also uses it as a
development environment for libraries. For
example, they have an XmlAda library for
XML processing in Ada. That started out
as part of gnat-gps to deal with XML stuff,
and once it got mature, they split it off into
a separate library. It’s on their website, you
can download it. They like developing stuff
as part of their IDE, and releasing it as
separate open-source packages to make Ada

105

more attractive for development. When
there are a lot of mature well-tested
libraries for Ada, people are more likely to
use it, and the company that makes this is
more likely to sell commercial Ada
compilers and commercial Ada support.

The reason for this hierarchical structure is
that any particular library has to explicitly
list all the other packages that it depends
on. So that, when it’s time to, say, split off
this widgets module, into its own
open-source library, it’s not going to be
calling into any of the other parts of the
IDE. It won’t get tangled up in the other
parts of it and make it impossible to pull
out as its own package. This structure,

106

which makes it really hard to build,
supports the business goals of the company
that develops the software. From a purely
technical standpoint, this isn’t a very good
way to design the build system, but it
totally makes sense when you consider the
application domain.

107

67 of 84

axiom

depsys

GNU Common Lisp

Literate sources

Documentation
browser

Graphics
Utility

functions
Interpreter-

Compiler
Math

library

Source
view

Build
view

Execution
viewview3dview3d

C compiler

Math
library

compiles

Regression
test results

Regression
tests

runs

Axiom

axiomaxiomaxiomaxiomaxiomsys

Macros and
build code

Interpreter Compiler

Lisp APIs

Typeset
literate
code

raw gcl

C compiler

interpreted gcl

GNU Common Lisp

compiles
itself

loads
lisp
code

tangle

saves

saves
and
links

intermediate
objects

intermediate
objects

intermediate
objects

intermediate
objects

C compiler
weave

sources

1
2

3

4

5

Slide 67

I found this in all the case studies and I’m
going through them in order.

For the axiom case, it has a really
complicated build, and it just will not and
does not build on the Ubuntu version that I
was working with.

108

68 of 84

Building axiom
Develop ideas in ScratchPad
Mark up code in
Rebuild from scratch
Run extensive regression tests

Slide 68

Here’s the basic outline of how you work
with axiom. It’s got its own language called
Scratchpad, that you can use for interactive
development, and you can develop ideas,
and you can write new mathematical code
in it.

109

69 of 84

Building axiom
Develop ideas in ScratchPad
Mark up code in
Rebuild from scratch and run
extensive regression tests

Slide 69

Here’s an example of the ScratchPad source
code. It’s not bad at all. It’s nice and
mathematical. And you can develop all
sorts of algorithms, and you can add new
types of number systems and stuff like that.

110

70 of 84

44 CHAPTER 5. HANDLING TERMINAL INPUT

5.3.23 defun setCurrentLine

Remember the current line. The cases are:

• If there is no $currentLine set it to the input

• Is the current line a string and the input a string? Make them into a list

• Is $currentLine not a cons cell? Make it one.

• Is the input a string? Cons it on the end of the list.

• Otherwise stick it on the end of the list

Note I suspect the last two cases do not occur in practice since they result in a
dotted pair if the input is not a cons. However, this is what the current code
does so I won’t change it. [$currentLine p??]

〈defun setCurrentLine〉≡
(defun |setCurrentLine| (s)

(declare (special |$currentLine|))

(cond

((null |$currentLine|) (setq |$currentLine| s))

((and (stringp |$currentLine|) (stringp s))

(setq |$currentLine| (list |$currentLine| s)))

((not (consp |$currentLine|)) (setq |$currentLine| (cons |$currentLine| s)))

((stringp s) (rplacd (last |$currentLine|) (cons s nil)))

(t (rplacd (last |$currentLine|) s)))

|$currentLine|)
44 CHAPTER 5. HANDLING TERMINAL INPUT

5.3.23 defun setCurrentLine

Remember the current line. The cases are:

• If there is no $currentLine set it to the input

• Is the current line a string and the input a string? Make them into a list

• Is $currentLine not a cons cell? Make it one.

• Is the input a string? Cons it on the end of the list.

• Otherwise stick it on the end of the list

Note I suspect the last two cases do not occur in practice since they result in a
dotted pair if the input is not a cons. However, this is what the current code
does so I won’t change it. [$currentLine p??]

〈defun setCurrentLine〉≡
(defun |setCurrentLine| (s)

(declare (special |$currentLine|))

(cond

((null |$currentLine|) (setq |$currentLine| s))

((and (stringp |$currentLine|) (stringp s))

(setq |$currentLine| (list |$currentLine| s)))

((not (consp |$currentLine|)) (setq |$currentLine| (cons |$currentLine| s)))

((stringp s) (rplacd (last |$currentLine|) (cons s nil)))

(t (rplacd (last |$currentLine|) s)))

|$currentLine|)

Building axiom
Develop ideas in ScratchPad
Mark up code in
Rebuild from scratch
Run extensive regression tests

Slide 70

Now, if you want to add this into axiom and
have it become part of axiom itself, you
gotta mark up the code in LaTeX. It’s got
this really complicated literate source code
system, this didn’t render properly, but it’s
probably better that you can’t see it. And
there’s all this extra stuff added in. So if I
read this, it says, “Remember the current
line. The cases are . . . ” these, and then at
then at the end, “Now I suspect that the
last two cases do not occur in practice,
however this is what the current code does
so I won’t change it.” It’s voluminous, and
it’s all done in this macro thing and the

111

input turns into that and it gets tangled,
and then, when you’re building
axiom—there’s no support for incremental
builds at all.

112

71 of 84

Building axiom
Develop ideas in ScratchPad
Mark up code in
Rebuild from scratch and run
extensive regression tests

Slide 71

You change one line in a seven-megabyte
LaTeX file and then you’ve got to rebuild
the whole thing from scratch and run all
these regression tests. And I’m looking at
this, and I’m trying to think, like, “Why
would someone do it like this?” Like, what,
how, what, how could someone create a
build system that doesn’t even support
incremental rebuilds?

113

72 of 84

Building axiom
Develop ideas in ScratchPad
Mark up code in
Rebuild from scratch and run
extensive regression tests

One possible parallel for this
unusual build system is another

process that mirrors it:

Slide 72

And where’s all this LaTeX stuff coming in
from? Like, I understand that it’s useful for
math, and—this might be a kind of a
tenuous connection, but the only thing that
I could think of that kind of parallels that
process is . . .

114

73 of 84

Building axiom
Develop ideas in ScratchPad
Mark up code in
Rebuild from scratch and run
extensive regression tests

Doing math
Develop ideas on scratch paper
Mark up results in
Submit for extensive peer review
and publication

Slide 73

Doing math itself. When you’re a
professional mathematician, you develop
your ideas on scratch paper, you work out
your proofs, you work out your algorithms,
and when you think you have something,
you mark it up in LaTeX, and then you
submit it for extensive peer review and
publication. That could take years
sometimes. The only way I could think of,
the only way I could conceive of someone
coming up with a build system like that is if
they were sort of using this system. This is
what I talk about—the abstractions of
doing professional mathematics show up in

115

the build system for this mathematical
software.

116

74 of 84

ruby-prof
cool new features

bugs, library upgrades

Slide 74

The last case study was the Ruby profiler.
It has a very small build system that
delegates almost everything to Ruby
libraries. Which is the way Ruby does
things. And the Ruby build system has
some really cool features, like being able to
export build time functionality to other
packages. It does have some bugs though.
But the bugs that I encountered in the
version I looked at are now fixed, because
Ruby believes in having lots of cool new
features, and that it’s ok if they’re buggy, as
long as there are lots of frequent library
upgrades that fix those bugs.

117

Here’s an article in LWN where the people
at Debian were complaining about Ruby
packages in general. Debian likes making a
stable release that people can use for years.
And Ruby believes in releasing something
cool every week, that has a few bugs, that
get fixed next week. And that’s really at
odds with Debian trying to have a really
stable version and Debian’s just saying this
is unmaintainable. But the Ruby culture of
doing this matches up exactly with the
build system.

118

75 of 84

Leaking Abstractions
and Build Ownership

Styles
An Empirical Study of Build Maintenance Effort

Shane McIntosh, Bram Adams, Thanh H. D. Nguyen,
Yasutaka Kamei, and Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University, Canada
{mcintosh, bram, thanhnguyen, kamei, ahmed}@cs.queensu.ca

ABSTRACT
The build system of a software project is responsible for
transforming source code and other development artifacts
into executable programs and deliverables. Similar to source
code, build system specifications require maintenance to cope
with newly implemented features, changes to imported Ap-
plication Program Interfaces (APIs), and source code re-
structuring. In this paper, we mine the version histories
of one proprietary and nine open source projects of different
sizes and domain to analyze the overhead that build mainte-
nance imposes on developers. We split our analysis into two
dimensions: (1) Build Coupling, i.e., how frequently source
code changes require build changes, and (2) Build Owner-
ship, i.e., the proportion of developers responsible for build
maintenance. Our results indicate that, despite the differ-
ence in scale, the build system churn rate is comparable to
that of the source code, and build changes induce more rel-
ative churn on the build system than source code changes
induce on the source code. Furthermore, build maintenance
yields up to a 27% overhead on source code development
and a 44% overhead on test development. Up to 79% of
source code developers and 89% of test code developers are
significantly impacted by build maintenance, yet investment
in build experts can reduce the proportion of impacted de-
velopers to 22% of source code developers and 24% of test
code developers.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming environments—
Programmer workbench; D.2.9 [Software Engineering]:
Management—Productivity, Programming teams, Software
configuration management

General Terms
Management, Measurement

Keywords
Empirical software engineering, build systems, mining soft-
ware repositories

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Honolulu, Hawaii, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

1. INTRODUCTION
The build system of a software project is the infrastruc-

ture that translates source code, libraries, and data files into
a set of deliverables (e.g., executables and documentation)
that are ready for distribution to customers. This trans-
formation into deliverables may involve thousands of build
commands that must be executed in a specific order to en-
sure the validity of the end product.

The build system is at the heart of the software devel-
opment ecosystem. First, developers need to run the build
system dozens of times per day to test the impact that their
code changes have on the software product. Second, the
build system is responsible for co-ordinating the execution
of unit tests, for example to only run the most critical tests
for a given source code change instead of the entire test suite.
Third, the complex task of packaging a software product for
release is typically automated by the build system, ensuring
that the correct versions of software components, required
libraries, documentation, and data files are included in the
release. Fourth, the practice of continuous integration, i.e.,
regularly downloading the latest source code changes onto
a dedicated server to validate that all unit and integration
tests still pass, would be impossible without a robust build
system that co-ordinates deliverable construction, test suite
execution, and test report generation.

Despite the critical role of the build system, build main-
tenance effort and its overhead on developers is still largely
undocumented. Of course, every seasoned programmer has
build system horror stories, ranging from cryptic build er-
ror messages to subtle inconsistencies in build deliverables.
Prior research on a number of small software projects esti-
mates that build maintenance imposes a 12% overhead on
the development process [13], distracting developers from
their main tasks. Other researchers studied the build sys-
tem of the Linux kernel, and found that the Linux build
engineers have spent a considerable amount of time to make
their build system as simple as possible for developers, at
the expense of a very complex and hard to maintain core
of build system machinery [2]. Recently, large software sys-
tems such as MySQL [9], Second Life [14], and KDE [22],
have migrated from older build system technologies like make
to newer build technologies like cmake to reduce the impact
that tedious build maintenance has on the productivity of
developers.

To provide project managers and developers with tangible
measurements of the overhead of build maintenance, this
paper performs a detailed empirical study of ten large, long-
lived C and Java projects, including one proprietary Java

Slide 75

To show that I’m not off the wall on this
abstractions stuff, I’m going to refer you to
some related work called “An Empirical
Study of Build Maintenance Effort” by
Shane McIntosh and others. And this was
an empirical study of a number of
open-source projects. By looking at how
often source code and build code were
changed together or separately in the
version control systems of about twenty
different projects, they hypothesized that
there seem to be two different kinds of
‘build ownership styles.’ In one, a project
will have the build system be a shared

119

responsibility for everyone. Every time they
make some changes, they’re supposed to
change the build system to keep up with
those changes. Whereas the other style is,
you have a team of people that have
centralized build ownership, and they’re
responsible for the build systems. You make
small changes to the build system if you add
one file or something, but for more major
changes it gets passed off to some people
who are specifically responsible just for the
build system. And they hypothesized that
the centralized build ownership style
reduces the overall maintenance effort for
build systems. What I’m claiming for the
leaking abstractions is that this agrees with

120

that. People who are dealing only with the
build systems, and not also with the
application or implementation domains, are
less likely to include things from the
application domains, the implementation
domains, into the build system, that can
have positive or negative effects but are
usually negative. In the case studies, for the
most part, having these abstractions did not
help in the build system. However for
python it definitely did. Because python’s
nice and clean, and it works well, and the
build system was the same way.

121

76 of 84

Contributions
 •	 Filename-based selection

procedure
 •	 Five deep case studies of open-

source multilanguage packages
 •	 Build patterns and anti-patterns
 •	 Error-proneness finding
 •	 (Anti-)pattern uses, implications
 •	 Abstraction “leakage” finding

Slide 76

These are the contributions I’ve covered
now. There’s the filename-based selection
procedure, the five deep case studies, the
build patterns and anti-patterns produced
from analyzing those case studies, the
finding of error-proneness, and the uses and
implications of (anti-)patterns, and this
finding about abstraction “leakage.”

122

77 of 84

Research question 1
Q)	What are the major issues

in building multilanguage
software?

Slide 77

To revisit the research questions:

What are the major issues in building
multilanguage software?

123

78 of 84

Research question 1
Q)	What are the major issues

in building multilanguage
software?

A) Getting the software to build

Slide 78

Getting it to build at all is the major issue.

124

79 of 84

Research question 2
Q)	How can build problems be

addressed?

Slide 79

How can build problems be addressed?

125

80 of 84

Research question 2
Q)	How can build problems be

addressed?

A)	(Anti-)patterns, particularly
when integrated into build
tools and build frameworks

Slide 80

Potentially through patterns and
anti-patterns, particularly when they’re
integrated into build tools and frameworks.

126

81 of 84

Research question 3
Q)	Why do they occur?

Slide 81

Why do patterns and anti-patterns occur?
Or, why do build problems occur,
specifically?

127

82 of 84

Research question 3
Q)	Why do they occur?

A)	Tangential
Leaking abstractions

	 Potentially addressed by
object-orientation, build-free
extensibility

Slide 82

Working on the build system is kind of
tangential to the software, so it doesn’t get
that much attention, and abstractions from
the implementation and application
domains leak in and sort of confuse the
build system. These problems are
potentially addressed by using object
orientation, to make it less tangential, and
Build-Free Extensibility, which would also
make it less tangential.

128

83 of 84

Questions?

Slide 83

So, this is the end of my— why does it?
Oh, I’m sorry— It’s really the last slide. It
says 83 of 84 but I must have started at
zero or something. Ok. [laughter]

Thanks. Thank you all for listening and I
will now take questions.

[Long pause]

You can ask about the weather or
something.

Abram: For filename collision, did you build
all the software on the case-sensitive
partition?

129

Andrew: No, after the first one, I just— I
don’t want to have to deal with this so I
switched to Linux.

Abram: Do you think it would help you if
you applied, if you tried to rebuild the other
ones on that partition?

Andrew: Would it help . . . ?

Abram: Well, because you have this grid,
right? And you say it only exists in one
product, but really you only tested one
product.

Andrew: Yeah that’s true. I could
potentially do that.

130

Abram: Ok.

...

Andrew: I know some people are saving
their questions.

Ken: Yeah, the examiners have to,
otherwise they’ll run out. [Chuckles]

Andrew: Ok, well . . .

Eha: Still there are two minutes to ten
o’clock, so, . . .

Ken: Or if you’re afraid of having your
question asked, you can ask it now.

Ehab: Ok. So. I guess if there are no

131

questions then we can ask the audience, not
the examining committee, to leave the
room, and we’ll start the examination.

Andrew: Ok. Do I go away now, or—

Ehab: Just a second. You wait for a while.

Abram: Yeah we should thank the speaker.

Ehab: Oh. Let’s thank the speaker.
[applause]

132

